Efficient heat dissipation of photonic crystal microcavity by monolayer graphene.

نویسندگان

  • Min-Hsiung Shih
  • Lain-Jong Li
  • Yi-Chun Yang
  • Hsiang-Yu Chou
  • Cheng-Te Lin
  • Ching-Yuan Su
چکیده

Graphene, which exhibits excellent thermal conductivity, is a potential heat dissipation medium for compact optoelectronic devices. Photonic devices normally produce large- quantity of unwanted heat, and thus, a heat dissipation strategy is urgently needed. In this study, single-layer graphene (SLG) grown by chemical vapor deposition (CVD) is used to cover the surface of a photonic crystal (PhC) cavity, where the heat flux produced by the PhC cavity can be efficiently dissipated along the in-plane direction of the SLG. The thermal properties of the graphene-capped PhC cavity were characterized by experiments and theoretical calculations. The thermal resistance of the SLG-capped PhC cavity obtained from experiments is lower than half of that of a bare PhC cavity. The temperature of a SLG-capped PhC cavity is 45 K lower than that without SLG capping under an optical power of 100 μW. Our simulation results indicate that SLG receives the majority of the heat fluxes from the device, leading to the efficient heat dissipation. Both the experimental and simulation results suggest that the SLG is a promising material to enhance the heat dissipation efficiency for optoelectronic applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sensitivity Enhancement of Ring Laser Gyroscope Using Dielectric-Graphene Photonic Crystal

In a ring laser gyroscope, due to the rotation and the Sagnac effect, a phase difference between the two counter-propagating beams is generated. In this device, the higher phase difference between these two beams causes the better the interference pattern detection, and thus the sensitivity is increased. In this paper, the effect of inserting a dielectric-graphene photonic crystal inside a ring...

متن کامل

Enhanced four-wave mixing in graphene-silicon slow-light photonic crystal waveguides

Articles you may be interested in Optimizing terahertz surface plasmons of a monolayer graphene and a graphene parallel plate waveguide using one-dimensional photonic crystal Wideband group velocity independent coupling into slow light silicon photonic crystal waveguide Appl. Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement Ap...

متن کامل

Total Absorption in a Graphene Monolayer in the Optical Regime by Critical Coupling with a Photonic Crystal Guided Resonance

We numerically demonstrate total absorption in graphene in the near-infrared and visible wavelength ranges by means of critical coupling with guided resonances of a photonic crystal slab. In this wavelength range, there is no plasmonic response in undoped graphene, so the critical coupling is entirely controlled by the properties of the photonic crystal resonance. We discuss the general theory ...

متن کامل

Nonlinear resistivity and heat dissipation in monolayer graphene

We have experimentally studied the nonlinear nature of electrical conduction in monolayer graphene devices on silica substrates. This nonlinearity manifests itself as a nonmonotonic dependence of the differential resistance on applied dc voltage bias across the sample. At temperatures below ∼70 K, the differential resistance exhibits a peak near zero bias that can be attributed to self-heating ...

متن کامل

Square lattice photonic crystal surface mode lasers.

In this report, we propose a square lattice photonic crystal hetero-slab-edge microcavity design. In numerical simulations, three surface modes in this microcavity are investigated and optimized by tuning the slab-edge termination τ and gradual mirror layer. High simulated quality (Q) factor of 2.3 × 10(5) and small mode volume of 0.105 μm(3) are obtained from microcavity with τ = 0.80. In expe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • ACS nano

دوره 7 12  شماره 

صفحات  -

تاریخ انتشار 2013